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ABSTRACT 

In the present paper the problem of non-linear numerical modelling of highly localized deformation phenomena in reinforced 

concrete (RC) columns subjected to axial load and uni(bi)-directional cyclic lateral loads is analyzed. Simulations in uniaxial 

and biaxial loading are performed over different load paths. The finite element model was implemented in order to determine 

the global structural response and to capture locally damage mechanisms and failure modes, such as the crack opening-closure 

phenomena and yielding of reinforcing steel bars. To achieve that the concrete damaged plasticity model and a trilinear elastic-

plastic steel model was considered in the refined modelling. The evaluated parameters were calibrated to the control of the 

damage evolution, based on degradation relationships of the energy dissipation capacity and ductility of RC columns. The 

predictive capability of the numerical approach was verified with experimental data. The discussion of results leads to a better 

understanding of global and local non-linear response mechanisms in RC structures under seismic loads. 

Keywords: bidirectional horizontal cyclic demand, nonlinear numerical model, plastic hinge, local damage, model calibration. 

INTRODUCTION 

Reinforced concrete (RC) column under biaxial cyclic load has complex non-linear hysteretic response [1]. Non-linearity of 

the material can be affected by time-dependent viscous damping mechanisms [2]. Moreover, structures under seismic loads 

develop a deformed geometrical configuration and behave like a non-linear kinematic mechanism [3]. Damage mechanisms on 

the concrete and reinforcing steel includes concrete tensile cracking, crushing and spalling of concrete cover, pinching effects, 

and yielding and buckling of steel reinforcement. Moreover, failures of the RC columns might trigger progressive collapse [4, 

5]. Although, columns are predominantly subjected to axial compression loads, under seismic loads, they are subjected to multi-

axial reversed cyclic. Under reversed cyclic loading, special considerations must be taken as multidirectional and unrecoverable 

deformations are developed. However, such singularities are not easy to predict neither experimentally nor numerically. 

This challenging topic has recently received special attention. Under biaxial analysis of the RC columns, inelastic deformation 

regimes can significantly affect the capacity of the member to dissipate energy and on its ductility [6]. This is described by 

higher stiffness and strength degradation and the observation of different failure patterns. Moreover, the performance of 

columns is affected by the load history and damage mechanisms, damage evolution, and failure patterns. Yu et al. [7], had 

stressed that the axial load ratio has also influence in the hysteric behavior of RC columns. However, bending analysis due to 

cyclic loading has been frequently oversimplified. There is a paucity of evidence to the correlation of multiaxial seismic loads. 

The consideration of the material behavior that accurately capture the damaged model under biaxial cyclic conditions has also 

received scant attention. The biaxial problem has received significant effort in experimental methods [8, 9]. A notable 

contribution was given by Nojavan et al. [10], who investigated the behavior of columns with large cross sectional dimensions 

and an ultra-high-performance fiber-reinforced concrete (UHP-FRC) under different loading protocols. Requirements for 

external strengthening and retrofitting of damaged RC columns has also encouraged researchers. Two examples of these 

applications are the use of carbon fiber-reinforced polymer [11] and steel-polypropylene hybrid fiber RC [12]. Overall, these 

experiments have addressed the problem under diverse considerations, for instance, the effect of the cross-section dimension, 

steel area ratio, load histories, comparative analysis with tests on uniaxial conditions, and variations in the axial load ratio. So 

far, however, there has been little discussion about the numerical analysis and constitutive modeling of RC columns under 

biaxial cyclic conditions. The mechanics that underpin the damage evolution of concrete constitutive models are not fully 

understood since the damage model proposed by Mazars and Pyaudier-Cabot [13]. Therefore, searching for a precise solution 

that combine cyclic loads is an urgent need, which require a complex formulation to be implemented. Consequently, it is 

required adjustments of the constitutive model to capture multiaxial stress-strain states [14]. 
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Various methods for non-linear modeling of RC structures reported [e.g. 15-23]. Finite element analysis of fractured concrete 

was introduced by Maekawa et al. [15] in the smeared crack model (SCM). The SCM model and the discrete crack model are 

frequently used in modeling approaches. The former considers the strain localization phenomena in softening regime, thus, as 

explained by Bazant and Jaime [16], the crack propagation reduces the element size approaching a zero-energy dissipation and 

the results become mesh sensitive. The mesh sensitivity problem can be overcome using the crack band theory [17], where a 

fixed element size is related to the magnitude of fracture energy.  

The approach given to problems to simulate columns in bending under the action of cyclic loads has been accomplished from 

a variety of models of concentrated inelasticity and distributed inelasticity, such as the lumped plasticity model. Distributed 

plasticity models allows a detailed analysis of nonlinearities associated with the inelastic response and has been successfully 

applied to RC structures by Huang and Kwon [18], where 320 experiments in RC columns were analyzed under quasi-static 

conditions. Also, RC columns under multiaxial conditions using a plasticity-distributed method have been modeled in 

OpenSees [11]. Member type models are also applied to the analysis of RC columns subjected bending moments. The model 

consider the non-linear behavior distributed in plastic hinges. The material properties of the sections located in the plastic hinge 

is responsible for the global behavior of the element. Scott and Fenves [19] proposed the numerical integration scheme for this 

model. Theoretically, local damage could be localized in sections outside the plastic hinge zone. The method fails to capture 

incremental inelastic distribution and cannot represent the actual damage pattern along the structural member. Despite these 

limitations, the method is able to predict with certain accuracy the hysteric response of RC members and generally low 

computational processing time is required. Fiber-section elements are used under the continuous section assumption. The 

section is discretized in fibers that characterized the uniaxial behavior of materials, concrete and reinforcing steel, and the 

longitudinal element is formulated under the concepts of beams theory of Euler-Bernoulli, Timoshenko, or generalized 

methods. The model was used to predict the behavior of RC columns subjected to biaxial cyclic loads [20]. In this method, 

transverse reinforcement is considered smeared and attributed to the concrete fibers of the section. Li et al. [21] proposed a 3D 

flexural-shear element implemented in a fiber-based model applied to RC columns subjected to biaxial bending moment. The 

method is suitable for applications in RC structures. Recent research attention has given to detailed finite element simulations 

of concrete members [18, 22-23], however, studies are still limited. 

The present research is centered in assessment of detailed finite element analysis representing a group of experimental tests on 

cantilever RC column specimens under biaxial horizontal cyclic loading. This work intended to determine the effect of material 

parameters of the concrete damaged plasticity model (CDPM) on the damage evolution based on hysteric responses. 

Comparison of the overall response against experimental data confirms the accuracy of the solution. In addition, responses of 

inelastic local deformation based on damage mechanisms are captured, such as the cracking, yielding in reinforcing steel and 

penetrating yielding. The approach relies on the observation of damage evolution and plastic hinge regions in RC columns 

subjected to reversed cyclic. 

EXPERIMENTAL CAMPAIGN 

The data used in this study was tested at the Laboratory of Earthquake and Structural Engineering (LESE) at University of 

Porto [9]. The test is based on the assumption that corner columns in buildings of approximated 4 storey should reproduce 

multidirectional seismic excitations. Axial loading ratios were correspondingly applied. It is known that corner columns in 

gravity frames, despite not having large axial loads, would experience multidirectional seismic excitations. Tests were carried 

out on specimens subjected to an axial compression load constantly applied at the top while two actuators transmitted lateral 

loads on orthogonal directions under controlled displacement conditions. These actuators generated reversed moments at the 

base. Three cycles for each displacement demand were applied monotonically, and a stop criterion was established at the end 

of the third cycle to observe relevant features of the damaged specimen.  

Four full-scale rectangular sections were considered. The specimens were classified into six series to reproduce effects on a 

variability of parameters, for instance, cross-section geometry, ratio of longitudinal reinforcing steel, material properties, 

uniaxial and biaxial conditions, axial load ratio, time history and the load paths. A total of 24 specimens of RC columns subject 

to cyclic lateral loads in one or two directions were tested. In this study, 4 specimens were selected to simulations, two in 

uniaxial conditions and two in biaxial conditions, as summarized in Table 1. The specimen height is consistent with a half 

double-curvature column of 3 𝑚 height and was added 0.20 𝑚 to support the actuators. Therefore, the specimen in cantilever 

is 1.70 𝑚 high and lateral loads are concentrated at 1.60 𝑚 height over the base. The clear height of the specimen is 1.50 𝑚. 

The column specimen was cast on a strong foundation block with a square base of 1.30 𝑚 × 1.30 𝑚 and 0.50 𝑚 depth, which 

is fixed by 4 prestressed steel rods to the strong set-up floor. This avoided sliding and overturning at the base of the specimen 

during tests. Detailing of the reinforcing steel for the two considered cross-sections are shown in Figure 1(a). 
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Figure 1. (a) Design dimension and reinforcing steel details of RC columns specimens. (b) Finite element model. 

The square cross-section has 8 longitudinal reinforcement bars with a diameter of 12 mm and 6 mm diameter stirrups. The 

rectangular cross-section has 14 longitudinal steel bars with a diameter of 12 mm and 6 mm diameter stirrups and crosstie bar. 

Stirrups are spaced at 75 mm in the specimen top region and 150 mm along the specimen and to the interior of the foundation 

block. A 3 cm concrete cover was considered along the column specimen. In the foundation block, a cage of reinforcing steels 

of 10 and 16 mm diameters were detailed. The axial load capacity 𝐴𝑔𝑓𝑐
′ of the column PB01-N09 is 3658.5 kN, for the PB01-

N13 is 1953.0 kN, and for the columns PB12-N23 and PB12-N24 is 3267.0 kN. The corresponding applied axial loads are 8.2 

% (PB01-N09), 10.7 % (PB01-N13), and 19.9 % (PB12-N23 and PB12-N24). The material properties of concrete and 

reinforcing steel are shown in Table 1. These values are the result of an extensive experimental work. The concrete compressive 

strength and tensile strength was determined at the same time of the tested columns. The yield strength of the reinforcing steel 

slightly varies between specimens, as specified in Table 1. However, the tested yield strength and ultimate strength of the 

reinforcing steel for all column specimens is superior than nominal values for the European steel grade S400. 

Table 1. RC column cross-section, material properties and loading conditions. 

Specimen 

(Column) 

Cross-

section 

𝒇𝒄𝒎 

[𝐌𝐏𝐚] 
𝒇𝒕 

 [𝐌𝐏𝐚] 
𝒇𝒚𝒔 

[𝐌𝐏𝐚] 

𝒇𝒔𝒖 

[𝐌𝐏𝐚] 
𝑬𝒔 

[𝐆𝐏𝐚] 
𝜺𝒔𝒖 

[%] 
Axial 

load [𝐤𝐍] 
Displacement 

history 

PB01-N09 30x50 24.39 2.57 429.69 551.08 203.46 22.40 300 N-S / x – dir. 

PB01-N13 30x30 21.70 2.98 429.69 551.08 203.46 22.40 210 W-E / y – dir. 

PB12-N23 30x30 36.30 3.24 450.26 576.92 189.53 20.39 650 Rhombus 

PB12-N24 30x30 36.30 3.24 450.26 576.92 189.53 20.39 650 Quadrangular 

CONSTITUTIVE MODEL 

The characterization of concrete and steel is individually considered. The concrete damaged plasticity model (CDPM), available 

in ABAQUS, and an elastic-plastic model for the reinforcement are briefly presented in this section. The plastic characteristics 

of the CDPM include a yield function proposed by Lubliner et al. [24] and modified by Lee and Fenves [25]. The CDPM 

captures the non-linear behavior of concrete in tension and compression through material parameters that consider both non-

recoverable deformations and stiffness degradation. The formulae implemented in the CDPM might be divided into four groups: 

damage variable, yield criterion, hardening/softening rule, and flow rule. 

Uniaxial behavior of the concrete in the softening regime 

The CDPM define the concrete behavior. Plasticity and damage evolution are implemented as functions of inelastic 

deformations that will develop crushing or tension deformations with consequently tensile cracking. The softening behavior of 

concrete is represented by expansive volumetric strain and is a macroscopic consequence of the evolution of micro-cracks. This 

phenomenon is called damage in the context of the CDPM [25]. The stiffness degradation due to this process is clearly observed 

in reversed cyclic concrete tests. Special care is required in the definition of the concrete stress-strain curve in softening ranges. 

The considered model for the uniaxial compression stress-strain curve is shown in Figure 2(a). The tension-compression 

relationship is initially defined by a parabolic segment given by the Hognestad parabola  

𝜎𝑐𝑚 = 𝑓𝑐𝑚 [2 (
𝜀𝑐

𝜀0

) − (
𝜀𝑐

𝜀0

)
2

] (1)  

for which the peak compression strength 𝑓𝑐𝑚 obtained from tests is used, and a second segment defined for the confined and 

unconfined concrete follows the Kent-Park concrete model [26]. The stress-strain behavior for the concrete under tension is 

approached using the relationship proposed by Hordijk [27]. In the softening range is defined that the tensile stress 𝜎𝑡, 
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responsible for the tensile fractures, is a function of the crack width 𝑤 and the properties of the material maximum tensile 

strength 𝑓𝑐𝑚 and critical crack opening 𝑤𝑐. 

𝜎𝑡

𝑓𝑡𝑚

= [1 + (𝑐1

𝑤

𝑤𝑐

)
3

] 𝑒
−𝑐2

𝑤
𝑤𝑐 −

𝑤

𝑤𝑐

(1 + 𝑐1
3)𝑒−𝑐2 (2)  

where, 

𝑓𝑡𝑚 = 𝑓𝑐𝑡𝑘0,𝑚 (
𝑓𝑐𝑘

𝑓𝑐𝑘0

)
2/3

 (3)  

It is known that the critical crack opening 𝑤𝑐 is related to loss of tensile strength. This is a property of the material and is 

associated with the tensile strength and the fracture energy of concrete 𝐺𝐹, 

𝑤𝑐 = 5.14
𝐺𝐹

𝑓𝑡𝑚

 
(4)  

The values of the constants 𝑐1 = 3.0 and 𝑐2 = 6.93 were obtained from the work of Hordijk [27] on tensile tests. It is worth to 

note that the fracture energy, which is the energy release rate, is size independent and that can be used as a material property. 

This can be determined according to the following expression 

𝐺𝐹 = 0.073𝑓𝑐𝑚
0.18 (5)  

or using the CEB-FIP Model [28]  

𝐺𝐹 = (0.0469𝑑𝑎
2 − 0.5𝑑𝑎 + 26) (

𝑓𝑡𝑚

10
)

0.7

           [N/mm] (6)  

where 𝑑𝑎 is the maximum size of the aggregate used in the concrete. The crushing energy and the fracture energy are related 

in the following equation 

𝐺𝑐ℎ = (
𝑓𝑐𝑚

𝑓𝑡𝑚

)
2

𝐺𝐹 (7)  

Finally, the expression used to reproduce the stress-strain curve based on the stress-fracture opening curve is 

𝜀𝑡 = 𝜀𝑡𝑚 +
𝑤

𝑙𝑒𝑞

 
(8)  

  
(a) (b) 

Figure 2. (a) Uniaxial compressive stress-strain models; (b) compressive damage variable. 

Concrete damaged plasticity model 

Damage parameters were introduced to simulate damage evolution during compression (crushing) and tension (cracking). The 

CDPM requires strain data in uniaxial compression and tension conditions and consider biaxial stress conditions. The CDPM 

modify the failure surface of the Drucker-Prager criterion using the parameter 𝐾𝑐 in the deviatoric cross section. The parameter 

𝐾𝑐 is define for a pressure invariant 𝑝 as the ratio of distances between the hydrostatic axis and the tensile meridian (TM) and 

compression meridian (CM) in the deviatoric cross section. This parameter affects the failure surface and ranges between 0.5, 

which is a Rankine yield surface, to 1 for the Drucker-Prager hypothesis. The default value used in simulation is 𝐾𝑐 = 2 3⁄ . 

Moreover, the model considers irreversible damage of the plain concrete. The plasticity characterizes irreversible deformations 

through the consideration of small deformations separated into elastic 𝜀𝑒 and plastic components 𝜀𝑝, thus 𝜀 = 𝜀𝑒 + 𝜀𝑝, where 

𝜀𝑒𝑙 is the elastic strain the and 𝜀𝑝𝑙 the plastic strain. Moreover, considering that the concrete is a quasi-brittle material vulnerable 

to damage evolution caused by inelastic deformations, a damage variable is introduced into the modelling. The CDPM considers 

the damage evolution in the cracked material, that is during the post-peak behavior typical of the plastic flow, introducing a 

scalar variable of damage 𝑑 for multiaxial conditions, this value oscillates between zero and 1. For the uniaxial compression 

and tension behavior, when the elastic region terminates, softening governs the stiffness degradation, and computed as: 
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𝜎𝑖𝑗 = (1 − 𝑑)𝐷𝑖𝑗𝑘𝑙
𝑒𝑙 (𝜀𝑖𝑗 − 𝜀𝑖𝑗

𝑝𝑙
) (9)  

where 𝜎𝑖𝑗 is a stress state function, 𝐷𝑖𝑗𝑘𝑙
𝑒𝑙 , is the initial elasticity matrix, 𝜀𝑖𝑗 is the tensor strain and 𝜀𝑖𝑗

𝑝𝑙
 is the tensor plastic strain. 

The parameter 𝑑 evaluates uniaxial tension and compression, 𝑑𝑡 and 𝑑𝑐, respectively. Simplifying equation (9) for each stress 

and compression damage parameter, 

𝜎𝑡 = (1 − 𝑑𝑡)𝐸0(𝜀𝑡 − 𝜀𝑡
𝑝𝑙

) (10)  

𝜎𝑐 = (1 − 𝑑𝑐)𝐸0(𝜀𝑐 − 𝜀𝑐
𝑝𝑙

)  (11)  

For uniaxial cyclic loading conditions, it is given as 

𝑑 = 1 − (1 − 𝑠𝑡𝑑𝑐)(1 − 𝑠𝑐𝑑𝑡) (12)  

where 𝐸0 is the initial (undamaged) elastic modulus, 𝑠𝑐  and 𝑠𝑡 are parameters responsible for reproducing the unilateral effect 

associated with the reversed stresses; 𝜎𝑐/𝜎𝑡, 𝜀𝑐/𝜀𝑡, 𝜀𝑐
𝑝𝑙

/𝜀𝑡
𝑝𝑙

 are resistance stresses, total deformations, plastic deformations for 

compression and tension, respectively. The damage parameters for the state of compression tension 𝑑𝑐 or tension 𝑑𝑡  

characterize the evolution of the initial elastic stiffness degradation 𝐸0 (undamaged) only after the material reaches the 

compressive and tensile deformations in the softening range. Damage variables were defined for the confined and unconfined 

concrete, as shown in Figure 2(b). The value of the damage parameter ranges from 0 to 1 for the undamaged to fully damaged 

state, respectively. 

The elastic stiffness degradation at any instant of inelastic deformation is then generalized 

𝐸 = (1 − 𝑑)𝐸0 (13)  

1 − 𝑑 = (1 − 𝑠𝑡𝑑𝑐)(1 − 𝑠𝑐𝑑𝑡) (14)  

𝑠𝑐 = 1 − ℎ𝑐(1 − 𝑟∗(𝜎11)) (15)  

𝑠𝑡 = 1 − ℎ𝑡𝑟∗(𝜎11) (16)  

where ℎ𝑐 and ℎ𝑡 are weighting factors ranging between 0 and 1. The deformations in the softening range of each curve 

separately to define crack strain 𝜀𝑐
𝑖𝑛 and inelastic strain 𝜀𝑐

𝑖𝑛 are defines as follows, 

𝜀𝑡
𝑐𝑘 = 𝜀𝑡 −

𝜎𝑡

𝐸0

 (17)  

𝜀𝑐
𝑖𝑛 = 𝜀𝑐 −

𝜎𝑐

𝐸0

 
(18)  

The CDPM takes these deformations from the damage curves and determine plastic deformations through the relationships, 

𝜀𝑐
𝑝𝑙

= 𝜀𝑐
𝑖𝑛 −

𝑑𝑐

(1 − 𝑑𝑐)

𝜎𝑐

𝐸0

 (19)  

𝜀𝑡
𝑝𝑙

= 𝜀𝑡
𝑐𝑘 −

𝑑𝑡

(1 − 𝑑𝑡)

𝜎𝑡

𝐸0

 
(20)  

The energy release rate 𝐺𝑓 is the energy that is required to create a fracture area unit. This concepts is represented by 𝑔𝑐 and 𝑔𝑡 

as the area below the softening range in the stress-strain curve. The compressive and tensile dissipative quantities 𝑔𝑐 and 𝑔𝑡 

are proportional to the ratio between the fracture energies in compression 𝐺𝑐 and tension 𝐺𝑡 and the characteristics lengths 𝐿𝑐 

and tension 𝐿𝑡, that is 𝑔𝑐 = 𝐺𝑐 𝐿𝑐⁄  and 𝑔𝑡 = 𝐺𝑡 𝐿𝑡⁄ . 

The CDPM defines a non-associated potential flow rule, which is based on a Drucker-Prager hyperbolic function, of the form 

𝐺 = √(𝜖𝜎𝑡0𝑡𝑎𝑛𝜓)2 + 𝑞2 − 𝑝𝑡𝑎𝑛𝜓, where 𝜖 is the eccentricity of the plastic potential surface, 𝜎𝑡0 the uniaxial tensile stress at 

failure, and 𝜓 the dilatation angle measured in the 𝑝 − 𝑞 plane. The approach rate of the shape of the hyperbolic surface to its 

asymptote is given by the eccentricity 𝜖. By definition, when the eccentricity tends to zero the flow potential becomes the 

classic case of Drucker-Prager. The recommended value for modeling through the CDPM is 𝜖 = 0.1. On the other hand, the 

dilatation angle 𝜓, is a physical representation of the internal friction angle of the concrete. Generally, for concrete is found 

values of 𝜓 in the range of 32° to 40°. Moreover, the CDPM considers failure on biaxial conditions. Based on this concept an 

state parameter of the material behavior is defined up to failure, which is a relationship of strengths between the biaxial state 

and uniaxial state 𝜎𝑏0 𝜎𝑐0⁄ . From analyzes carried out in experimental investigations of the concrete strength was determined 

𝜎𝑏0 𝜎𝑐0⁄ = 1.16. As previous explained, the CDPM is verified through the four parameters, 𝐾𝑐, 𝜓, 𝜎𝑏0 𝜎𝑐0⁄ , 𝜖, for which the 

values used herein are summarized in Table 2. 

Table 2. Parameters of the concrete damaged plasticity model. 

𝐾𝑐 Dilatation angle 𝜓 [°] 𝜎𝑏0 𝜎𝑐0⁄  Eccentricity 𝜖 

0.667 32 1.16 0.1 
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Reinforcing steel model 

A tri-linear elastic-plastic curve with best fit to experimental results is used in this work. The linear-elastic stage of the model 

curve match the experimental data, with an slope equal to the modulus of elasticity of steel 𝐸𝑠 and maximum value at the yield 

strength 𝑓𝑠𝑦. The subsequent stage refers to the yield plateau. The last stage captures an isotropic strain-hardening in post-yield 

plastic regimes that ends at the ultimate strength 𝑓𝑢. The hardening stage is considered because the reinforcing steel highly 

contributes to the inelastic behavior of the column. Numerical values of the elastic segment, plateau segments, and ultimate 

strain are summarized in Table 1. The strain-hardening ratio assumed herein is 13.6 % in models with 𝜀𝑠𝑢 = 22.4% and 11.4% 

in models with 𝜀𝑠𝑢 = 20.39%. 

FINITE ELEMENT ANALYSIS 

The solution scheme is based on non-linear dynamic simulations. The implicit integration algorithm was adopted to solve the 

dynamic equations of motion because it is unconditionally stable for time-step in a transient analysis. Simplified contact 

conditions between concrete-reinforcing steel were considered because the adopted solution scheme would present problems 

of convergence and impact on the computational time for complex interactions. The contact is simulated using the embedded 

technique available in ABAQUS [29].  Therefore, local bond slip effects are not considered, which implies perfect bond with 

no slip between the concrete and reinforcing steel. This is consistent with experimental observations, where no significant 

bond-slip effect was observed. Interactional effects are out of scope of this study, and methods including the effect of the rebar-

concrete slippage under cyclic loading must be object of investigation. The model is approached in two and three dimensions. 

In three-dimensions, are used solid elements -8-node linear brick with reduced integration (C3D8R)- for concrete and 2-node 

linear beam (B31) for the reinforcement. In two-dimensions, the 4-node bilinear reduced integration with hourglass control 

(CPS4R) is used for the concrete and the B31 for the reinforcement. This strategy intends to perform a robust simulation and 

decrease the computational cost by simplifying uniaxial models. Local unrealistic damage of elements in contact with the 

actuators due to stress concentration is avoided using rigid brace elements. The actuator force is modeled as controlled 

displacements in reversed cyclic. The mesh generation, boundary constraints, and loading conditions for three-dimensional 

models is schematically represented in Figure 1(b). The generated mesh is regular and has mainly 50 mm size elements. The 

definition of a constant element size is required to determine the fracture energy 𝐺𝑓 and minimize the inherent mesh sensitivity 

[30]. All nodes at the base were fully constrained. The model is loaded in three continuous steps. In the first step, gravity loads 

were imposed. Then, a constant axial load is applied at the top section at 10 kN per time increment, and it remains constant 

after the completion of the simulation. The last step is where lateral drift demand is applied by controlled displacements located 

at the top of the column. The specimen experience lateral drifts during 3 cycles for each displacement demand. 

Hysteresis response of the model 

This study has verified through modeling that the hysteresis behavior of the RC columns effectively takes into account the 

stiffness degradation. The simulations have reasonably good approximation of the stiffness degradation obtained in 

experiments. However, for large displacements, the model has a complex geometric non-linearity. The response becomes 

dependent of the magnitude of the displacement demand and abrupt changes in the load history were difficult to predict, as 

observed at the ‘steps’ of Figure 3(c) for the P12-N23 test. Figure 3(a) and (b) presents the hysteric behavior for tests on biaxial 

conditions. The results obtained in simulations super-estimate the initial stiffness but not the peak resistance. The main reason 

for this effect is that finite element analysis intrinsically predicts higher values of initial stiffness in the elastic phase. 

   
(a) (b) (c) 

Figure 3. Force-deflection curve (a) PB12-N24 x-dir., (b) PB12-N23 y-dir., and (c) Energy dissipated by PB12-N23. 
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Energy dissipated 

The energy dissipated is consequent of the accumulation of individual energies associated with the drift reached at each cyclic 

load amplitude, as represented in Figure 3(c). The energy dissipated due to cycle increments is equivalent to the area enclosed 

in each hysteresis loop. It is verified that the energy dissipated from columns of RC increases for higher values of axial load, 

and independently of the geometry of the section and reinforcing steel area. The ductility decreases with the increase of the 

loading rate. Overall, the model was affect by changes on low and high cycle demands, for which the damage variable coupled 

into the finite element model was unable to properly capture the dissipated energy, as observed in Figure 3(c). 

Observed damage 

The damaged region at the column base in terms of plastic strain magnitudes is shown in Figure 4. It is observed that the 

damage region is a non-lineal zone around the plastic hinge zone. The results indicate that the modeled damage approximates 

the experiment response with accuracy. The damage evolution and consequent failure of sections consider fractures in the 

concrete, yielding in the reinforcement, spalling of the concrete cover, and crushing of concrete core. Based on input properties 

and different failure modes observed, can be summarized that: (1) compression damage increase at the base and is observed 

for larger displacement demands, (2) the loading combination significantly affects the damage evolution and failure mechanism, 

(3) damage bands associated with tensile fractures are initiated at the base and developed in bands around the plastic hinge. 

When this singularity takes place, the increasing demand of inelastic deformations causes progressively damage around the 

base of the model, where the energy dissipates, and consequently the longitudinal bars undergo yielding. On simulations the 

predominant bending response produce transverse cracks. This highly reduce the axial and lateral load capacity of the columns. 

It is captured in the model the pinching effect. Pinching is associated with the local damage at the base of the column associated 

with a fragile failure of the concrete without confinement. Moreover, the ductility of the column is affected by yielding of 

longitudinal reinforcement, which is related to the peak lateral strength of the specimen, and the local damage at the base. The 

specimen failure is governed by the bending response. 

    
(a) (b) (c) (d) 

Figure 4. Equivalent plastic strain magnitudes (a) PB01-N13 (b) PB01-N09.  

Damaged zone in PB12-N24 (c) test [9](d) model. 

CONCLUSIONS 

The constitutive approach used in this study is governed by the consideration of the damage evolution in RC columns subjected 

to reversal bending in biaxial cyclic conditions. Simulations demanded an important computational time but the results allowed 

a detailed visualization of the global response and to capture failure mechanisms and residual load capacity. The method 

addressed was verified against experimental data with good accuracy. This result will set up a framework for a solution of 

nonlinear problems of RC columns under biaxial cyclic loads. Based on the results obtained in this study the following specific 

conclusions can be drawn: (1) The response to biaxial cyclic loads produces more stiffness degradation for incremented cycles. 

This has important significance when evaluating compression members on structures subjected to earthquakes on the rigor 

imposed by current technical codes. (2) The damage analysis was mainly concentrated at the base of the column, in the plastic 

hinge zone. (3) The model provides the starting point and final size of plastic hinges, which is in agreement with the damage 

evolution described in experiments. It is recommended for future studies to take into account complex failure mechanisms of 

the reinforcing steel, for instance opening of stirrups and buckling of reinforcing longitudinal bars. Finally, the constitutive 

model should be verified over a wider range of biaxial stress states based on experimental data. 
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